Sci Fi Writers Have / No Sense of Energy

Sci-fi writers do not know what "energy" is.
    open/close all folders 

    Anime and Manga 
  • Digimon has so many examples that one has to wonder how the Digital World hasn't collapsed upon itself yet. Surprisingly many monsters have profiles that detail them attacking their opponents with ludicrously hot fire, absolute zero-temperature ice, missiles and other projectiles with the destructive power of nuclear warheads, the list goes on. At least these largely appear to be Informed Attributes in the anime, video games and other sources... or the writers really have no idea what they are talking about. At these preposterously high outputs, the Mons could singlehandedly eradicate the planet they're in.
  • In a heat-related example, when Bleach's Yamamoto revealed his bankai, the temperature for one of the techniques is stated to exceed 15,000,000°C. For reference, this is the estimated temperature for the sun's core.
  • In A Certain Magical Index, Accelerator at one point uses his powers to throw a building across the city. That's impressive enough on its own, but the novel mentions where he got the energy to do that: he siphoned it off of the Earth's rotational force, using enough of it that Earth's day was lengthened by five minutes. One fan did the math on that and came up with so much kinetic energy that it would theoretically be enough to shatter the planet several times over. We all know Accelerator is ridiculously powerful, but one wonders if the author meant to make him that powerful.
  • In Cat Planet Cuties, when the Catian mothership is sabotaged, it's sent on a collision course with Earth. The Catians tell the main characters that an impact will be of the 'wipe out humanity' level though the ship has special failsafes that will cause it to self-destruct before it can enter atmosphere in order to prevent such a catastrophe. Later, a news report says that the ship is uncontrollably heading towards Earth and could cause an impact of "multiple kilotons" if it hits, which would put it at the range of a small tactical nuclear weapon, which is orders of magnitude smaller.

    Comic Books 
  • Superman's power is said to come entirely from solar energy. He can use this power to, among, other things, move faster than the speed of light, a feat which requires infinite amounts of energy. His strength, heat vision, heck, even simply flying, take far more energy than simple solar collection, no matter how efficient, would provide.
  • The Flash, even at relatively slow speeds, would use way more energy than a human body could ever safely contain, other than his body's mass being directly converted into energy. The Speed Force, introduced during Mark Waid's run, is basically an entire universe of energy that is accessed by speedsters to power their speed.
  • In V4 Legion of Super-Heroes, the moon is blown up. Earth hardly notices, even though just a few chunks of it should wreak disaster on the Earth equivalent to being hit by hundreds of asteroids at once. Later on, the Earth is blown up and said to damage the moons of Saturn, when the effect should be unnoticeable.

    Films — Live-Action 
  • In Warrior of the Lost World a big truck known as "Mega Weapon" is said to require "40 megatons" to destroy. This is more than TWO THOUSAND times the yield of the bomb that destroyed Hiroshima.
  • Energy, where it comes from and where it goes to, is almost never discussed in Star Wars. Individual fighter craft are capable FTL Travel, but exactly how they are powered is undefined. In Return of the Jedi, the second Death Star, in a low orbit above the moon of Endor, is destroyed by having rockets fired at its main reactor. This releases enough energy to completely vaporize the entire station, either dozens or hundreds of miles in diameter (the exact width of the Death Star varies from source to source, and arguably shot to shot) and then - nothing. The energy release simply produces a cloud of plasma, which quickly dissipates. No other electromagnetic energy of any kind was seemingly emitted or traveled much beyond the boundaries of the plasma cloud. Endor itself suffered no ill effects of any kind from this massive explosion in low orbit. The Expanded Universe attempts to Hand Wave the lack of debris by stating that most of it was sucked through a wormhole created by the Death Star's exotic fuel exploding.
  • In the Back to the Future films, time travel needs 1.21 gigawatts — the only source of which is supposedly plutonium or a lightning bolt. Large-scale electrical generation power plants can generate several gigawatts or more.note  Not exactly something you can carry around in a DeLorean, or that you could necessarily draw from the local power grid, but also not the impossibility the film makes it out to be.
  • Armageddon provides a shiny example in the categories of size, energy, and distance: An asteroid the size of Texas (roughly 700 - 1,000 km across depending on the axis chosen) is not an asteroid - it's a planetoid. It is comparable in size to the larger moons of the outer gas giants. The movie states that our heroes drill 800 feet into it. Many modern rig operations close on to twice that, while diamond-head drilling goes to four times the stated depth before hitting its cost-effectiveness ceiling. And lastly, they they split the asteroid planetoid in two by setting off a 20 megaton nuclear device in the hole. Now, setting aside the concept of getting a nuke into such a hole (which is fairly narrow in diameter), this is roughly equivalent to taking a bowling ball, pricking its surface gently with a push pin, and then farting into the hole. Imagine drilling into the ground in the middle of Texas, 800 feet down, and blowing up a few nukes - do you think it would blast the entire state apart?
  • The Terminator: The T-800 asks for a phased plasma rifle in the 40 watt range. The phased part is a bit of a mystery, but forty watts of plasma is about half a candle's output, as a very hot fire is the most familiar example of plasma. Hitting your opponent with the output of a lit match might sting a bit, but it doesn't sound terribly lethal.
  • In Forbidden Planet, the Captain is overawed by their fight with the Id Monster, saying that it easily survived being hit by "three billion electron-volts". An electron-volt is the energy a single electron gains by moving through potential difference of one volt: 6.25 quintillionths of a joule. Three billion electron volts wouldn't be enough energy to light a match; collision with a flying mosquito would be three hundred times as much energy.
  • Total Recall (2012) has an elevator that passes through the Earth's core—never mind that that would basically involve passing through the working part of a fission reactor, not something the car in question really seems equipped to do.

  • One book of the Star Challenge collection, Exploding Suns, is quite egregious on this. In this book, we've a fleet (seemingly of medium size) of ships that bombards a star with "negatron missiles" and "anti-matter charges"note  until it implodes to form a black hole (one has to wonder how many munitions they had and how a star attacked by antimatter and electrons can collapse). But also we've a humanoid body large, but seemingly not of planetary proportions, said to be made of the energy of a thousand suns. The latter thing has densities comparable to those during the earliest moments of the Big Bang and nothing happens to the planet where's based until one good ending, in which it collapses forming a black hole and absorbing that planet. You, however, are fine in space despite being very close to it

  • In the Riverworld series, food is provided by an energy-to-matter conversion. Three times a day, each Grailstone blasts out enough energy to create food for seven hundred people, and half that energy gets wasted into the air. There are some 20,000,000 Grailstones on the planet. Just for clarity, a one-kiloton thermonuclear explosion converts about .05 grams of mass to energy. The Grailstones should blow the atmosphere off the planet at breakfast, lunch and dinner. Now that's a barbecue!
    • The source of this energy is also a problem: it's stated that the Grail system is powered by thermoelectric generators under the planet's crust. The available energy (3.6 exajoules per day) sounds like a lot, but it's only enough to synthesize about 40kg of food.
    • The extra matter also ought to turn the River Valley into a miles-deep sewer of human waste in a few short years. There would have to be some means of converting the mass back into energy to avoid this.
  • Alastair Reynolds' Revelation Space series is usually very good about keeping distances, masses and velocities in proportion (not too surprising, as Reynolds is an astrophysicist). He does lose track of energy sometimes though. "Redemption Ark" has "crustbuster warheads" with a yield of 1 teraton - that's a million megatons, - and mentions that a destabilized Conjoiner drive on a lighthugger releases three orders of magnitude more energy than THAT. Granted, nobody sane ever tries to harm a lighthugger in vicinity of an inhabited planet, but couple times in the series starships do go up. In the Absolution Gap novel, the lighthugger Gnostic Ascension blows up when less than 20,000 km from an icy moon Hela. At the very least on hemisphere of Hela should have melted.
  • In one of the Star Wars Expanded Universe technical manuals, a starfighter's main guns are about 1/200,000,000th that of a capital ship's heavy guns, and yet starfighters still try to shoot at enemy capital ships like they can do more than annoy the enemy captain by obstructing his view out the bridge. The series that book belongs to throws out words like kilotons for star fighter weaponry, megatons for Slave-1's weaponry, and gigatons for capital scale weaponry. All this for weapons which, for the films that they're detailing, display yields that rarely stack up to the more extreme episodes of Mythbusters. The light ion cannons on the Invisible Hand are supposedly throwing out as much heat as a 4.8 megaton thermonuclear bomb, which is strange when compared to the Hoth Ion cannon, a weapon that disabled an Imperial Star Destroyer in a handful of shots and yet didn't produce enough heat to melt the surrounding snow. In general, you could probably knock off about six to nine orders of magnitude on anything written in those books and you'd still get way too much. Supposedly, these represent the maximum yields, but because nothing like these figures occur in the movies and there are multiple times when using even a percentage of a percentage of these maximum yields would prevent ship-wide destruction, where do these numbers come from?
    • However, the author of these works, Dr. Curtis Saxton, is an astrophysicist and so by any right should have a very good understanding of the yields being described. Unfortunately, there is controversy surrounding the author's involvement in the Online Vs. Debate, which, if true, would mean that the author didn't so much screw up the math as deliberately misrepresent it. Another scientist and Star Wars fan/contributor, Gary Sarli, analyzed Saxton's work and came to very different conclusions. Particularly one of Saxton's most influential calculations, which not only vastly overestimated how much damage needed to be done to fulfill a certain operation ("Base Delta Zero", glassing a planet, in other wordsnote ), but he also failed to take into account the multiple fleets that would be involved in doing it.
    • And on the third hand, proponents of the ICS numbers point out that they are several orders of magnitude less than what you'd get simply by downscaling from the Death Star, which has been calculated from screen evidencehow?  to produce a minimum of 1E38 joules, roughly the energy that the Sun produces in eight thousand years, when firing a planet-busting shot. That puts the Empire well into Type II on the Kardashev scale. By the same token there are those who think that Saxton did the above calculations and then gave their shipboard weapons numbers that he would have expected a Type II civilization to have.
      • And critics will counter that there are a lot of weird effects for that to be a purely brute-force weapon, like the existence of a two-stage explosion and a Planar Shockwave. And since the Death Star novel came out, they've either retconned or clarified that the superlaser uses an exotic reaction that causes large parts of the planet to shift into hyperspace (presumably in a violent manner, since vessels with hyperdrives can do so without exploding), causing the planet to blow itself up.
  • In the Tom Swift/Hardy Boys crossover novel Time Bomb, if an item is sent in time to a space that is already occupied by another object, the objects explode with a matter-to-energy conversion of 100%, and a very big explosion. Fair enough, but the author grossly underestimates the magnitude of the explosion. In one example, Tom sends a small pebble back in time into a rock and creates a crater three feet in diameter. However, the explanation given indicates that the overlap of solid objects through time travel mimics a matter-antimatter interaction in real life. Therefore, assuming time travel really did work as described in the book, then sending a single human hair back in time into a solid object would cause an explosion equivalent to 26.66 tons of TNT, to say nothing of sending a pebble into a rock (which would probably be closer to an A-bomb at least).
  • Star Carrier: Earth Strike gives the power of a capital ship's spinal particle accelerator as 1.15 TeV. Wolfram Alpha equates that to 1.2 times the kinetic energy of a flying mosquito.
    • Particle accelerators are currently listed in terms of the energy they provide to each particle. This means the power of the ship's spinal mount is closer to 1.2 times the kinetic energy of a swarm of mosquitos 2.8396739*10^22 strong assuming it's equivalent to a 1 megaton explosion.

    Live-Action TV 
  • In Space: 1999, an explosion at a nuclear waste dump accelerates Earth's moon to a speed that defies the laws of physics. In fact, the energy required to get the moon out of orbit is more than enough to completely pulverize it.
  • Star Trek: The Next Generation:
    • In the episode "Conundrum," the crew is brainwashed by a Satarran into helping them win a war against the Lysians, whose hardware is "greatly outclassed" by the Enterprise-D. Specifically, the energy output of the Lysian Central Command is given as "4.3 kilojoules". According to its packaging, the energy content of a single piece of After Eight chocolate is 145 kilojoules. The Lysians cannot protect their own starbase from a flashlight. Even better: a Lysian destroyer effortlessly dispatched by the Enterprise earlier in the episode is mentioned as having disruptors worth 2.1 megajoules—500something times stronger than their starbase's shield output. The Satarrans' hat is brainwashing entire crews. Wasn't there a simpler way for them to win the war than to make an episode of television?
    • The episode "Ménage à Troi" goes extremely far in the other direction. The Enterprise is studying a stellar nursery whose power output is said to be 5.34 x 10^41 watts. This is equivalent to over one quadrillion Suns (roughly the same total output of about 10,000 Milky Ways), or a supernova blast every three minutes. It is so huge that any planet within 500 light-years of the nebula would be roasted by the sheer heat it produces. Oh, and it's also stated that it is fairly typical example of this phenomenon.
  • Every Star Trek with a ship exploding SERIOUSLY underestimates the size of the explosion. Take the Constitution-class. To do what it does, with as much as "20 years" of time between refueling quoted in the original Manual, 10,000 tons of antimatter is not an unreasonable figure to allow the immense, continuous power uses. At ~43 megatons of TNT equivalent for a kilogram of antimatter reacting with matter, we get 430,000 gigatons of TNT. To put it in perspective, that's about three or four dinosaur killers. But we routinely see ships near other exploding ships being unaffected by the storm of hard radiation.
  • Star Trek's transporters, and, in TNG and later, the replicators, are sorta swatting flies with a bazooka. An average human(oid)'s mass is, in energy terms, something on the order of 6 exawatts—the amount of energy consumed by an entire Kardashev I civilization in about 18 days (our civilization is Kardashev .71, for comparison). It's gotta be easier to use a shuttle, and it doesn't take that much longer, since the ships have to be sitting in orbit to beam down anyway. Also, Conservation of Baryon Number says that every particle created creates the same antiparticle, so every cup of "Tea, Earl Grey, Hot" ought to produce the same mass of antimatter...which would, upon contact with normal matter, annihilate with the energy of 1000 Fat Man nukes. Possibly they siphon the antimatter back into the ship's power-plants, since the Federation uses antimatter as fuel, but still—hell of a hassle for a cup of tea.
    • James Blish acknowledged the issue in the early and non-canon novel Spock Must Die: Scotty explains that the transporter does not convert energy ("That's a turrible oversimplification") and that to do so would in fact blow up the ship. Instead, the transporter analyses the energy state of each particle and produces a Dirac jump to a equivalent energy state wherever.
    • Replicators actually have the excuse that expanded universe sources say they merely rearrange matter at a molecular (IE chemical) level using technologically vaguely described as derived from transporters. So presumably somewhere there is a big tank full of carbon, hydrogen, etc that the replicator mashes together into a cup of tea. (This is also used to explain why some stuff is still mined as it can't be replicated) Transporters really have no excuse however and every attempt ever to explain them only results in more questions then it can hope to answer.
    • Replicators don't actually "create" things out of energy. They alter a bulk substance on the quantum level to match the molecular signature of the object being replicated. There are resolution limitations which result in a lot of single-bit errors in replicated material (which is why people find replicated food inferior to the real thing) - replicated matter is easily detected by sensors for this reason. The ship carries a large stock of a bulk material that is statistically shown to require the least energy to transform into everyday materials. When matter is recycled on the ship, the replicators merely convert it back to this bulk material and store it. Both of these activities require a large amount of energy, however Starfleet determined that it took less energy than it would to actually store/prepare food for a ship that routinely carries over 1000 people on long missions.
  • In the Secret of Bigfoot episodes of The Six Million Dollar Man, Oscar Goldman has to detonate a 500 megaton atomic bomb that's been buried 500 feet down to trigger a fault and stop a much bigger earthquake that will level the west coast. The Aliens, who have their base in the vicinity, send The Beautiful Woman of the Week to defuse the device, and Steve Austin has to stop her. Steve overcomes the alien and then runs off with 10 seconds before detonation. It's been established that Steve can run at a top speed of 60 miles an hour, meaning that he could make it a whole 880 feet before detonation. Although to be fair, writer Kenny Johnson addresses the problem and goes "Yeah, but what are you going to do?"
    • A 500 megaton bomb is roughly equivalent to a Richter magnitude 9.0 earthquake, such as the one that hit Japan in 2011 - which was about 200 times deeper.
  • In The Flash (2014) the energy required to operate the "Speedforce Bazooka" is somewhat under 4 Terajoules. Which is a large amount of energy, but nowhere near "More energy than what's in the Sun", as stated in the show. It's roughly the energy of a kiloton explosion, meaning a small backpack nuke. The amount of energy the sun produces in one second is roughly 380 trillion Terajoules of energy.

    Video Games 
  • Kind of energy: the Pokédex entries for some Pokémon species. "Magcargo's body temperature is 18,000 degrees Fahrenheit" (Sun's surface: 5,800 Kelvin, or 9980 F), "Charizard's fire is hot enough to melt boulders" (1200 Celsius, 2192 F)...
  • In Metroid Prime: Hunters, the Volt Driver is said to fire multi-terawatt bursts of electricity. A terawatt, or one trillion (10^12) watts is the unit that measures the total amount of power used by humanity (about 15 terawatts). The Judicator fires supercooled plasma that reaches near Absolute Zero. Both of these are hand held weapons.
    • On the other side of the scale, the Shock Coil weapon somehow manages to kill things with neutrinos. Neutrinos are famous for having almost zero mass. Trillions of them are passing through your body right now. The description says these neutrinos are "high density" but the sheer amount it would take to do even the smallest bit of damage would be absolutely insane.note 
    • The annihilator beam of Metroid Prime 2: Echoes combines matter and antimatter. This would produce a blast comparable to a nuclear bomb. The beam is semiautomatic (0.5 grams of matter and antimatter produce roughly 9 * 10^13 Joules of energy — which is, roughly, the energy output of a Fat Man type nuclear explosion. 0.0001g of matter and antimatter each would still produce enough energy to melt a metric ton of steel.) Despite this, the Annihilator beam ends up being a Jack-of-All-Stats compared to fighting a Light or Dark Aether enemy with the opposite polarity weapon, being less effective against killing either of them.
  • The fusion or antimatter powerplants for the starships in the X-Universe have laughably low power outputs. The net output of a 4 kilometer long destroyer's antimatter reactor is about the same as burning a couple gallons of gasoline. Shields would be incapable of protecting a ship from flecks of dust because of how low their rating would be in reality.
  • The writers of Naev made the same mistake, giving (for example) the Kestrel, a cruiser, 700 MJ of shielding. A gallon of gas produces 130 MJ.
  • Deus Ex: Human Revolution gives us the P.E.P.S. energy stunner. With an output of 5.0 x 10^67 J. The estimated total energy of the observable universe is approximately 4.0 × 10^69 J. Ayup, the stun gun that can't knock over a boss and can be fired multiple times in quick succession releases about 1.25% of all the energy in the entire universe.
  • In League of Legends Cho'gath's Feral Scream ability is released by "451 Exawatt Omnisonic Speakers" in his Battlecast Prime skin. That is about 2600 times the power Earth receives from the sun, and translates to 326 decibels. For reference, the threshold of pain starts at 140 decibels, glass shatters at 163 dB, eardrums start rupturing at 190 dB, and the threshold of death ends at 200 dB. In 1 second, this Feral Scream releases more energy than 2000 Tsar Bombas, the more powerful nuclear device in history, or 100 gigatons of TNT.

    Western Animation 
  • Ben 10:
    • The self destruct mechanism on the Omnitrix releases enough energy to destroy the entire universe. One of many problems with that idea is if you ever got that much energy into one point (assuming it existed in the first place), the total absence of energy from the rest of the universe would destroy it anyway.
    • Also in the episode "Ben Versus the Negative Ten", the artifact the villains are trying to steal is described by Grandpa Max as containing "The power of a thousand suns... enough to blow a continent off the face of the Earth!" note 
  • The Superfriends frequently have their heroes performing feats that even the pre-Crisis Silver Age comic authors would have blanched at:
    • In one World's Greatest Superfriends episode, a giant Space Viking several times the size of Jupiter steals the Earth, puts it in his belt pouch, and stomps away (!) through interplanetary space. While Apache Chief distracts the villain by growing to his size and wrestling with him (!!), Superman sneaks into his belt pouch, recovers the Earth, and then pushes the Earth back into its proper orbit in the space of a few seconds (!!!). Ignoring the fact that pushing on the Earth that hard would turn it inside-out, this operation would require many times more energy than Superman can possibly store within his own body, even if he were powerered by antimatter.
    • In the Challenge episode "Invasion of the Fearians", Green Lantern is sent out to divert some meteors that are on a collision course with Earth. Unfortunately, the meteors are yellow, so his power ring won't affect them. What does he do? He moves the Earth out of the way.
      • And neglects to put it back.
  • The nineties version of Teenage Mutant Ninja Turtles had in one episode the attempt of villains Shredder and Krang of depleting the sun to power the Technodrome, it gets worse if you consider that in another episode they had tried to steal the power of a nuclear submarine for the same purpose. Go figure. They've also gotten to partial operation with a stationary bike generator.
  • In the Supermarionation series Fireball XL5, it only took a few missiles to blow up an incoming planet.
  • In an episode of Star Wars: The Clone Wars, a clone mentions that the enemy is capable of firing missiles that carry a "100 megaton yield." That sort of power would be about 5,000 times stronger than the Fat Man atomic bomb dropped during WWII and equal to the theoretical maximum yield of the largest nuclear weapon ever made. Shortly after, we see three large missiles fire and produce fireballs roughly in line with your bog-standard Hollywood explosion. While technically these missiles were never identified as the 100-MT yield ones, why bother mentioning what the yields are for their biggest missiles if all they're going to do is fire the weaksauce ones?

  • Anytime a single ship is used for surface-to-orbit and orbit-to-orbit flight, someone has misapprehended (or just ignored as boring) the scale of the energy involved. To achieve orbit, one needs maximal thrust, while for flight between planetary orbits, exhaust velocity is the most important characteristic (since the higher the exhaust velocity, the higher the eventual "cruising speed" the rocket can reach). With one exception, no single rocket system is good in both regards, and the exception uses nuclear bombs as spark plugs, so it's also far from optimal for use on a planet. More realistically, large ships would be used for interplanetary flight, and they would carry small, Space Shuttle-like entry vehicles for landing on planets. Especially egregious when a ship that can do both—which is, again, more-or-less impossible—is described as a clunker or a piece of junk.
    • Many science fiction settings get around this by mounting two or three separate drives on their starships, typically an in-atmosphere engine (Star Trek's thrusters), a sublight space engine (Star Trek's impulse engines and Star Wars' ion drives), and a faster-than-light engine (Star Trek's Warp drive and Star Wars' hyperdrive). Others use antigravity technology (Star Wars' repulsorlifts).
  • Almost all spaceships in fiction ignore the issue of propellant—literary science fiction is only slightly better about it than movies, TV, or video games. Realistically, a spaceship that doesn't use a reactionless drive is going to have most of its mass made up of propellant, and most of its volume taken up by storage for that propellant, if it's going to get up to any appreciable fraction of light speed, because the only way to get acceleration in a vacuum is by expelling reaction-mass. The most efficient-burning propellants are also the least space-efficient ones; liquid hydrogen, for example (not even gaseous hydrogen) provides the best exhaust velocity and thus the best efficiency, but has a density of 71 kilograms per cubic meter (water, for comparison, is 1000 kilograms per cubic meter). How many fictional spaceships can you name that are little more than an ignition system and exhaust nozzle at one end, a crew cabin at the other, and a whole bunch of tank(s) in between?
    • Probably the worst offenders are anything that uses antimatter as fuel. Antimatter only works because of how horrifyingly volatile it is; it takes a lot of room to safely store the stuff—the antimatter itself is generally suspended well away from the outer parts of its containment vessels by magnetic levitation, plus there's all kinds of machinery to keep those systems running, and then there's the conduits to get the antimatter from storage to the engine system. The realistic antimatter ship, designed by Robert Frisbee, is hundreds of kilometers long, crossing the line from Mile-Long Ship to Big Dumb Object.
  • A lot of fictional ships ignore the issue of cooling. While some designs can dump their waste-heat into the exhaust of their engines (known as "open-cycle cooling"), others will have to radiate it away (convection and conduction don't really happen in space). The more powerful engines (to say nothing of the kind of power-generator necessary to run, say, artificial gravity or hyperdrive technology) will have huge amounts of waste-heat to get rid of—for instance, a fusion rocket tends to involve at least dozens of gigawatts of energy, and if even 5% of that doesn't get expelled with the exhaust, that's still 50 MW to get rid of (the energy usage of a small city). Radiative cooling is mostly accomplished by means of large, fragile sheets of what is basically foil, heated to a dull red glow as the cooling system channels waste heat into their surfaces. These heat radiators are noticeably absent from almost all ships in visual media, and all too many in literature, as well (Arthur C. Clarke wanted them on the ship in 2001: A Space Odyssey, but was overruled because they "looked silly"—they're there in the book). See Space Is Cold for more info.
  • Pretty much any time a planet or star is blown up via non-exotic means (i.e. specific anti-planet weapons that wouldn't work against ships) is going to be an example of this. Even a civilization whose hand guns level city blocks isn't going to be blowing up a planet any time soon.