Follow TV Tropes

Following

History UsefulNotes / Airships

Go To

OR

Tabs MOD

Changed: 15

Is there an issue? Send a MessageReason:
dewicking disambiguation page


Because they were available for far longer and were much more forgiving in terms of structure, aerodynamics and payload than airplanes, airships were experimentally used for a wide variety of niches -- sometimes with the same ship. While some of these applications took off quite well, others [[JustForPun went over like a lead Zeppelin.]] Here's a brief summary of the uses that airships saw, as well as their performance.

to:

Because they were available for far longer and were much more forgiving in terms of structure, aerodynamics and payload than airplanes, airships were experimentally used for a wide variety of niches -- sometimes with the same ship. While some of these applications took off quite well, others [[JustForPun went over like a lead Zeppelin.]] Zeppelin. Here's a brief summary of the uses that airships saw, as well as their performance.
Is there an issue? Send a MessageReason:
None


The simplest, cheapest class of airship. They are basically elongated, sealed hot air balloons with a rudder and propulsion- what the French would call a ''"Dirigeable"'' or "directable" balloon. While most are technically 'blimps', they are in a different league than ''helium'' blimps because they have a different lift gas and lack several major subsystems. Their major advantage is cost- they require no hangar, no mast, and very minimal ground support because they deflate and pack away after each flight. The ships themselves cost a tiny fraction as much as comparable helium airships, due to the convenience and simplicity of hot air. However, the disadvantage is that use of hot air hampers the ship's speed, reducing it to roughly a third as much as a helium blimp- 20 to 30 mph. It is no coincidence that hot air has a third the lift of helium. The ships can be built much lighter than helium vessels, so there is not as much payload loss at small scales, but the loss of speed is unavoidable. This limits them to advertising, photography and scientific roles.


to:

The simplest, cheapest class of airship. They are basically elongated, sealed hot air balloons with a rudder and propulsion- propulsion -- what the French would call a ''"Dirigeable"'' or "directable" balloon. While most are technically 'blimps', they are in a different league than ''helium'' blimps because they have a different lift gas and lack several major subsystems. Their major advantage is cost- cost -- they require no hangar, no mast, and very minimal ground support because they deflate and pack away after each flight. The ships themselves cost a tiny fraction as much as comparable helium airships, due to the convenience and simplicity of hot air. However, the disadvantage is that use of hot air hampers the ship's speed, reducing it to roughly a third as much as a helium blimp- blimp -- 20 to 30 mph. It is no coincidence that hot air has a third the lift of helium. The ships can be built much lighter than helium vessels, so there is not as much payload loss at small scales, but the loss of speed is unavoidable. This limits them to advertising, photography and scientific roles.




Blimps, or nonrigid airships, are the most ubiquitous class of airship. They rely on slight gas pressure- maintained by internal air sacs called ballonets- to maintain their shape. In other words, they're inflatable. A blimp consists of two parts- the envelope, hull or gasbag; and the gondola or control car. The engine(s) are either connected to the gondola or lashed directly to the hull, as are the tail fins. Unlike a Zeppelin, there are no structures or rooms hidden within the hull, and all habitable spaces are confined to the gondola. Typically blimps have no separate gas cells or helium compartmentalization. Because of their smaller size and more fragile nature, blimps are usually slower and carry much less payload than a Zeppelin or semi-rigid. Nearly all hot air airships are blimps. Famous blimps include the Goodyear Blimp and Henri Giffard's airship, the first ever flown. Strictly speaking, hot-air airships are also blimps, since they are not rigid, but they are discussed separately here since they use a different manner of lift.


to:

Blimps, or nonrigid airships, are the most ubiquitous class of airship. They rely on slight gas pressure- maintained by internal air sacs called ballonets- ballonets -- to maintain their shape. In other words, they're inflatable. A blimp consists of two parts- parts -- the envelope, hull or gasbag; and the gondola or control car. The engine(s) are either connected to the gondola or lashed directly to the hull, as are the tail fins. Unlike a Zeppelin, there are no structures or rooms hidden within the hull, and all habitable spaces are confined to the gondola. Typically blimps have no separate gas cells or helium compartmentalization. Because of their smaller size and more fragile nature, blimps are usually slower and carry much less payload than a Zeppelin or semi-rigid. Nearly all hot air airships are blimps. Famous blimps include the Goodyear Blimp and Henri Giffard's airship, the first ever flown. Strictly speaking, hot-air airships are also blimps, since they are not rigid, but they are discussed separately here since they use a different manner of lift.




The newest, fastest (90-140 mph) class of airship. Hybrid airships are not hybridizations of different categories of airship. Rather, they are hybrids between lighter-than-air (LTA) airships and heavier-than-air (HTA) vehicles such as airplanes, tiltrotors and helicopters, and often all of the above in that they combine the two main methods of generating lift. In a pure LTA aircraft all lift is generated due to buoyancy of its gasbag, and in a pure HTA aircraft all lift is generated from aerodynamic forces — usually the pressure difference on the both sides of a moving wing, either fixed as in a plane, or rotating, as in a helicopter. Hybrid airships derive their lift from both sources, and many proposed designs can actually vary the ratio between them. They are an extremely recent category of airship, and are preferred by many over LTA airships because of their larger cargo payloads. A hybrid the size of a midsized blimp can carry 20 tons. Hybrids the size of the Zeppelins of the early 20th century can carry 250-500 tons to the Zeppelins' 50 or so. But even more important than the larger payload is their ability to land without expensive, specialized ground assistance, and their greatly increased redundancy, safety, and resistance to bad weather. Hybrid airships can be any class of airship. Notable hybrids include the Lockheed-Martin Skytug, the Solar Ships, the Aeroscraft, and the U.S. Army's LEMV.

to:

The newest, fastest (90-140 mph) class of airship. Hybrid airships are not hybridizations of different categories of airship. Rather, they are hybrids between lighter-than-air (LTA) airships and heavier-than-air (HTA) vehicles such as airplanes, tiltrotors and helicopters, and often all of the above in that they combine the two main methods of generating lift. In a pure LTA aircraft all lift is generated due to buoyancy of its gasbag, and in a pure HTA aircraft all lift is generated from aerodynamic forces -- usually the pressure difference on the both sides of a moving wing, either fixed as in a plane, or rotating, as in a helicopter. Hybrid airships derive their lift from both sources, and many proposed designs can actually vary the ratio between them. They are an extremely recent category of airship, and are preferred by many over LTA airships because of their larger cargo payloads. A hybrid the size of a midsized blimp can carry 20 tons. Hybrids the size of the Zeppelins of the early 20th century can carry 250-500 tons to the Zeppelins' 50 or so. But even more important than the larger payload is their ability to land without expensive, specialized ground assistance, and their greatly increased redundancy, safety, and resistance to bad weather. Hybrid airships can be any class of airship. Notable hybrids include the Lockheed-Martin Skytug, the Solar Ships, the Aeroscraft, and the U.S. Army's LEMV.



Airships have a reputation for being disaster-prone and/or vulnerable to the weather. Whilst this was certainly true for hydrogen airships 90 years ago, it should also be noted that these were, well, hydrogen airships 90 years ago. Modern airships are actually quite safe, and compare favorably to helicopters [[note]]Which may or may not be saying much, given the reputation [[HellishCopter helicopters themselves]] have[[/note]]. It's hard to make generalizations, though, because airships are just like airplanes when it comes to safety: an ultralight plane is less safe in inclement weather and crash situations than a 747. In the same way, some hot airships are blown backwards in a light breeze, but on the other hand, in the 1950s an American naval blimp program manned an Arctic airborne early warning station continuously for 10 days in the winter. The weather was the area's worst in years, grounding all other military and commercial airplanes with combinations and variations of ice, snow, rain, fog, and 65 mph winds. The airships went on sorties that lasted for days, in extremely heavy icing conditions, and succeeded in their mission with no crashes- effectively crushing the misconception that airships are inherently more vulnerable to weather than other aircraft. In fact, their natural buoyancy, lengthy endurance and ability to maneuver at low speeds makes them very well suited to ride out storms.

to:

Airships have a reputation for being disaster-prone and/or vulnerable to the weather. Whilst this was certainly true for hydrogen airships 90 years ago, it should also be noted that these were, well, hydrogen airships 90 years ago. Modern airships are actually quite safe, and compare favorably to helicopters [[note]]Which may or may not be saying much, given the reputation [[HellishCopter helicopters themselves]] have[[/note]]. It's hard to make generalizations, though, because airships are just like airplanes when it comes to safety: an ultralight plane is less safe in inclement weather and crash situations than a 747. In the same way, some hot airships are blown backwards in a light breeze, but on the other hand, in the 1950s an American naval blimp program manned an Arctic airborne early warning station continuously for 10 days in the winter. The weather was the area's worst in years, grounding all other military and commercial airplanes with combinations and variations of ice, snow, rain, fog, and 65 mph winds. The airships went on sorties that lasted for days, in extremely heavy icing conditions, and succeeded in their mission with no crashes- crashes, effectively crushing the misconception that airships are inherently more vulnerable to weather than other aircraft. In fact, their natural buoyancy, lengthy endurance and ability to maneuver at low speeds makes them very well suited to ride out storms.



Lastly, there is indeed a helium shortage -- but that is often mistaken for the helium ''running out.'' Rather, the current helium crisis is due to problems with delays with new production facilities, reserves being abandoned, existing outdated production facilities breaking down, and increasing demand. Waste factors in as well; the overwhelming majority of helium -- which is used for things like industry and medicine -- is perfectly recyclable, but is instead discarded. The United States alone has enough ''proven'' helium reserves in natural gas to last sixty years, and the country's unproven reserves are estimated to be 1,000 times that -- not accounting for improvements in extraction methods, recycling or additional reserves. Furthermore, the other noble gases krypton and xenon are commercially extracted from the atmosphere; helium is more than 5 and 65 times as abundant than them in the atmosphere, respectively. Helium is constantly escaping the atmosphere into space, but it comprises a stable, significant percentage of it because it is constantly seeping from the ground due to radioactive decay. It is more expensive to distill helium from the atmosphere with current methods, but not enough to jeopardize certain competitive airship operations. Natural gas helium is currently around $.07 per liter, and if extracted from the atmosphere, it is estimated to be roughly three times as energy-intensive to produce. Even so, Helium remains a surprisingly small portion of the cost of an airship- the initial fill-up, which is the single largest gas-related expense, is typically only a small percentage of the cost of the ship itself, and airships leak very little Helium per annum and avoid venting it at all costs, so the cost of keeping it inflated is relatively negligible.

It should also be mentioned that helium was adopted on a large scale after the Hindenburg disaster "proved" hydrogen too dangerous, but the Hindenburg was - again - an old design using outdated technology. In the current age, with our enormous advancements, it's perfectly possible to build extremely safe hydrogen-filled airships. The reason why this is not done isn't practical - it's just a matter of public fear.

to:

Lastly, there is indeed a helium shortage -- but that is often mistaken for the helium ''running out.'' Rather, the current helium crisis is due to problems with delays with new production facilities, reserves being abandoned, existing outdated production facilities breaking down, and increasing demand. Waste factors in as well; the overwhelming majority of helium -- which is used for things like industry and medicine -- is perfectly recyclable, but is instead discarded. The United States alone has enough ''proven'' helium reserves in natural gas to last sixty years, and the country's unproven reserves are estimated to be 1,000 times that -- not accounting for improvements in extraction methods, recycling or additional reserves. Furthermore, the other noble gases krypton and xenon are commercially extracted from the atmosphere; helium is more than 5 and 65 times as abundant than them in the atmosphere, respectively. Helium is constantly escaping the atmosphere into space, but it comprises a stable, significant percentage of it because it is constantly seeping from the ground due to radioactive decay. It is more expensive to distill helium from the atmosphere with current methods, but not enough to jeopardize certain competitive airship operations. Natural gas helium is currently around $.07 per liter, and if extracted from the atmosphere, it is estimated to be roughly three times as energy-intensive to produce. Even so, Helium remains a surprisingly small portion of the cost of an airship- airship -- the initial fill-up, which is the single largest gas-related expense, is typically only a small percentage of the cost of the ship itself, and airships leak very little Helium per annum and avoid venting it at all costs, so the cost of keeping it inflated is relatively negligible.

It should also be mentioned that helium was adopted on a large scale after the Hindenburg disaster "proved" hydrogen too dangerous, but the Hindenburg was - again - was, again, an old design using outdated technology. In the current age, with our enormous advancements, it's perfectly possible to build extremely safe hydrogen-filled airships. The reason why this is not done isn't practical - -- it's just a matter of public fear.



Due to the obvious size incentive, airships are quite large. UsefulNotes/TheHindenburg was the largest, at 804 feet in length and 135 feet in diameter. The interior was somewhat like a cross between a fancy hotel, a luxury train, and an ocean liner, with staterooms for 70 passengers. It contained two hundred thousand cubic meters -- or over seven million cubic feet -- of hydrogen gas, which provided 250 tons of lift- at a time when the world's heaviest airplane had a maximum takeoff weight of 56 tons. It could fly at about 130 km/h, or 85 mph. Airships in general are slightly slower than helicopters (hybrids about the same), and between 1/4 and 1/5 as fast as a jet airliner. The world flight endurance record is held by a UsefulNotes/ColdWar-era military airship called ''Snowbird,'' which stayed aloft with a crew of 13 for ten and a half days, and crossed the Atlantic twice in that time. Even small blimps are efficient enough to stay aloft for more than 24 hours at a time.

to:

Due to the obvious size incentive, airships are quite large. UsefulNotes/TheHindenburg was the largest, at 804 feet in length and 135 feet in diameter. The interior was somewhat like a cross between a fancy hotel, a luxury train, and an ocean liner, with staterooms for 70 passengers. It contained two hundred thousand cubic meters -- or over seven million cubic feet -- of hydrogen gas, which provided 250 tons of lift- lift -- at a time when the world's heaviest airplane had a maximum takeoff weight of 56 tons. It could fly at about 130 km/h, or 85 mph. Airships in general are slightly slower than helicopters (hybrids about the same), and between 1/4 and 1/5 as fast as a jet airliner. The world flight endurance record is held by a UsefulNotes/ColdWar-era military airship called ''Snowbird,'' which stayed aloft with a crew of 13 for ten and a half days, and crossed the Atlantic twice in that time. Even small blimps are efficient enough to stay aloft for more than 24 hours at a time.



Flying an airship, or flying in an airship, is said to be quite bizarre. Small blimps tend to gently rock from side to side in the breeze like a small boat, while large Zeppelins are preternaturally still and quiet. Passengers and crew are simultaneously struck by the sheer size and weightlessness of the craft. Piloting these vessels is said to be akin to yachting- for any input you give, there is a delay before the action is carried out, after which one must often input ''counter''control so as not to overshoot the intended bearing. Modern hybrid airships eagerly take to the sky after a quick surge of power or a short take-off run, after which they behave quite like a normal airship, but more fast and controllable. In the past, airships were kept in trim by carefully venting lift gas and releasing ballast. Nowadays, there is a much greater degree of control over lift, by flying slightly "heavy," altering the aerodynamic lift, or by altering the density or temperature of the gas; this is done to conserve expensive helium. Direction is changed either by thrust vectoring, or by steering with the fins, which only works when the airship is moving.

The inside of a large airship is unlike any other aircraft. Because airships are both much larger and much less structurally dense than other aircraft, combined with the fact that they can carry larger payloads than any other type of aircraft, they must have [[UnnecessarilyLargeInterior very large, spacious interiors]] in order to facilitate proper weight distribution throughout the hull. This is the primary reason why the ''[[UsefulNotes/TheHindenburg Hindenburg]]'' stands to this day as having the most interior space of any aircraft, just the A deck alone had more floor space than all 3 decks of the world's largest passenger jet, the Airbus A380. On military and commercial craft, this space is dedicated to long corridors with fuel, crew accommodations and supplies, interspersed with [[AirborneAircraftCarrier aircraft hangars]] and cargo bays, respectively. On luxury craft like the ''Graf Zeppelin ll'' and the ''Hindenburg,'' this space was devoted to promenades, staterooms, dining rooms, lounges, bars, and so on and so forth. [[TheBridge The gondolas]] of large airships were quite amazing, they were large, wrapped with windows from floor to ceiling. The airship would be controlled with a spoked helm and circular engine telegraphs, [[TheSkyIsAnOcean just like on a nautical ship,]] and the officers and TheCaptain would be dressed in full naval regalia - [[JustifiedTrope justified]], as they were usually recruited from the surface fleet.

to:

Flying an airship, or flying in an airship, is said to be quite bizarre. Small blimps tend to gently rock from side to side in the breeze like a small boat, while large Zeppelins are preternaturally still and quiet. Passengers and crew are simultaneously struck by the sheer size and weightlessness of the craft. Piloting these vessels is said to be akin to yachting- yachting -- for any input you give, there is a delay before the action is carried out, after which one must often input ''counter''control so as not to overshoot the intended bearing. Modern hybrid airships eagerly take to the sky after a quick surge of power or a short take-off run, after which they behave quite like a normal airship, but more fast and controllable. In the past, airships were kept in trim by carefully venting lift gas and releasing ballast. Nowadays, there is a much greater degree of control over lift, by flying slightly "heavy," altering the aerodynamic lift, or by altering the density or temperature of the gas; this is done to conserve expensive helium. Direction is changed either by thrust vectoring, or by steering with the fins, which only works when the airship is moving.

The inside of a large airship is unlike any other aircraft. Because airships are both much larger and much less structurally dense than other aircraft, combined with the fact that they can carry larger payloads than any other type of aircraft, they must have [[UnnecessarilyLargeInterior very large, spacious interiors]] in order to facilitate proper weight distribution throughout the hull. This is the primary reason why the ''[[UsefulNotes/TheHindenburg Hindenburg]]'' stands to this day as having the most interior space of any aircraft, just the A deck alone had more floor space than all 3 decks of the world's largest passenger jet, the Airbus A380. On military and commercial craft, this space is dedicated to long corridors with fuel, crew accommodations and supplies, interspersed with [[AirborneAircraftCarrier aircraft hangars]] and cargo bays, respectively. On luxury craft like the ''Graf Zeppelin ll'' and the ''Hindenburg,'' this space was devoted to promenades, staterooms, dining rooms, lounges, bars, and so on and so forth. [[TheBridge The gondolas]] of large airships were quite amazing, they were large, wrapped with windows from floor to ceiling. The airship would be controlled with a spoked helm and circular engine telegraphs, [[TheSkyIsAnOcean just like on a nautical ship,]] and the officers and TheCaptain would be dressed in full naval regalia - -- [[JustifiedTrope justified]], as they were usually recruited from the surface fleet.



Airships were a dream of early aviators even before the first manned balloon flew in 1783. In 1852, Henri Giffard first flew in a tiny 113,000 cubic foot blimp powered by a 3-horsepower steam engine which weighed several hundred pounds. It had a less-than-impressive top speed of six miles per hour. Airships would then go on to be powered by electrical motors and eventually gas engines. By 1897, David Schwartz invented the first rigid, metalclad airship. But it was not until the 1900 flight of Count Zeppelin's LZ-1 that airships began to move out of the experimental stage. At first, they were used by the military for surveillance purposes, until Zeppelin founded the world's first passenger airline, DELAG, in 1909. During UsefulNotes/WorldWarI, Zeppelins, blimps and semirigids were used by many nations. They enjoyed much success in naval patrol and surveillance niches, but German attempts to use Zeppelins as high-altitude heavy bombers rapidly became too costly when the British defenders, after many failures, finally came up with a successful countermeasure- the incendiary bullet. They were replaced by fleets of Gotha planes. The development airships experienced during the war was vital for their later commercial service.

to:

Airships were a dream of early aviators even before the first manned balloon flew in 1783. In 1852, Henri Giffard first flew in a tiny 113,000 cubic foot blimp powered by a 3-horsepower steam engine which weighed several hundred pounds. It had a less-than-impressive top speed of six miles per hour. Airships would then go on to be powered by electrical motors and eventually gas engines. By 1897, David Schwartz invented the first rigid, metalclad airship. But it was not until the 1900 flight of Count Zeppelin's LZ-1 that airships began to move out of the experimental stage. At first, they were used by the military for surveillance purposes, until Zeppelin founded the world's first passenger airline, DELAG, in 1909. During UsefulNotes/WorldWarI, Zeppelins, blimps and semirigids were used by many nations. They enjoyed much success in naval patrol and surveillance niches, but German attempts to use Zeppelins as high-altitude heavy bombers rapidly became too costly when the British defenders, after many failures, finally came up with a successful countermeasure- countermeasure -- the incendiary bullet. They were replaced by fleets of Gotha planes. The development airships experienced during the war was vital for their later commercial service.



After the devastating tragedy that ended rigid airship travel just as it was beginning, Helium blimps continued on, defending Allied convoys from Axis submarines with stunning success during UsefulNotes/WorldWarII. During the war, they escorted over 89,000 ships, losing only one to a submarine attack; as convoys that weren't protected were sunk left and right by U-Boat wolf packs. American blimps enjoyed the highest mission readiness of any aircraft during the war. After the war ended, American blimps continued to be used for a few decades as airborne early warning radar relays and sub-hunters, but that niche was driven into obsolescence with the adoption of nigh-undetectable nuclear submarine and [=ICBMs=]. In the meantime, Goodyear had continued operating a handful of blimps to advertise its brand. This stability- or some might say stagnation- went relatively undisturbed until the invention of the hot air airship in the 1970s, and their subsequent rise in advertising popularity, but even then, it was limited to the advertising niche. Many times during this fallow era from the mid-40s to the late 90s, there were attempts to revive the airship beyond its advertising role. These attempts generated a little press, but few generated any flying prototypes. One that did reach prototyping stage was the disastrous Forest Service Helistat, which consisted of four chopped-up, obsolete helicopters affixed to a spindly frame and a Cold War-era blimp envelope. The helicopters destabilized, and it fell apart and burst into flames and shrapnel within seconds of taking off, killing the pilot. Another attempt was the Aereon project, which was the subject of the popular book ''The Deltoid Pumpkin Seed,'' by John [=McPhee=]. It flew, and was a sound concept, but it failed to get funding. With each attempt at a revival never getting off the ground, airships became increasingly associated with VaporWare, and few regarded them seriously anymore.

to:

After the devastating tragedy that ended rigid airship travel just as it was beginning, Helium blimps continued on, defending Allied convoys from Axis submarines with stunning success during UsefulNotes/WorldWarII. During the war, they escorted over 89,000 ships, losing only one to a submarine attack; as convoys that weren't protected were sunk left and right by U-Boat wolf packs. American blimps enjoyed the highest mission readiness of any aircraft during the war. After the war ended, American blimps continued to be used for a few decades as airborne early warning radar relays and sub-hunters, but that niche was driven into obsolescence with the adoption of nigh-undetectable nuclear submarine and [=ICBMs=]. In the meantime, Goodyear had continued operating a handful of blimps to advertise its brand. This stability- stability -- or some might say stagnation- say, stagnation -- went relatively undisturbed until the invention of the hot air airship in the 1970s, and their subsequent rise in advertising popularity, but even then, it was limited to the advertising niche. Many times during this fallow era from the mid-40s to the late 90s, there were attempts to revive the airship beyond its advertising role. These attempts generated a little press, but few generated any flying prototypes. One that did reach prototyping stage was the disastrous Forest Service Helistat, which consisted of four chopped-up, obsolete helicopters affixed to a spindly frame and a Cold War-era blimp envelope. The helicopters destabilized, and it fell apart and burst into flames and shrapnel within seconds of taking off, killing the pilot. Another attempt was the Aereon project, which was the subject of the popular book ''The Deltoid Pumpkin Seed,'' by John [=McPhee=]. It flew, and was a sound concept, but it failed to get funding. With each attempt at a revival never getting off the ground, airships became increasingly associated with VaporWare, and few regarded them seriously anymore.



By the 1980s, airship technology had atrophied to such an extreme, even advertising was proving to be complicated for airships. Then, a British company called Airship Industries introduced the next generation of airships. Their successful "Skyship" series of airships are in use to this day, and employ advanced composite materials, ducted fans, and vectored thrust. These airships were vastly more competent all-around than their UsefulNotes/WorldWarII-era Goodyear counterparts, and could do more than simply advertise- they can carry tourists in their spacious cabins, conduct research, and perform long-range scouting duties. Soon after, the Zeppelin Company, which had expanded into other markets following the ''[[UsefulNotes/TheHindenburg Hindenburg]]'' crash, reentered the airship business with the advanced semi-rigid Zeppelin NT. The NT, which has recently been updated and adopted by Goodyear to replace their aging blimps, also employs vectored thrust and composites, which drastically cut the crew and maintenance costs while increasing performance.

Shortly after this mini-revival of the 80's and 90's, the Pentagon became keenly interested in airships during the 00's. The major airship project of that decade, ultra-heavy-lift WALRUS program, was cancelled and subsequently revived in a different iteration by DARPA working with NASA and the Worldwide Aeros Corporation. During late 00's and into the 10's, the two primary airship developments, Blue Devil II and LEMV, were both cancelled. However, the private market is producing far more flying prototypes than any previous revival schemes were ever able to. This can be attributed to an influx of practicality: airship startups that had gone defunct, such as Cargolifter, attempted to build gigantic, impractical airships weighing in the millions of pounds from scratch, with next to zero experience or prototyping. Now, however, established companies such as Lockheed Martin, Hybrid Air Vehicles and Worldwide Aeros Corporation are developing hybrid airships in the smaller, more economical 20-50 ton capacity range. Solar Ship, a Canadian company, has set their sights even smaller- they've produced three prototypes of a very small, solar powered flying wing hybrid airship that competes against small helicopters and bushplanes. After entering the market with these, ''then'' those companies will work on scaling the designs up for efficiency. Arguably the most significant development milestone has been the ongoing certification and liscencing process for production-model cargo airships; the creation of a new regulatory category of aircraft is currently under way.

to:

By the 1980s, airship technology had atrophied to such an extreme, even advertising was proving to be complicated for airships. Then, a British company called Airship Industries introduced the next generation of airships. Their successful "Skyship" series of airships are in use to this day, and employ advanced composite materials, ducted fans, and vectored thrust. These airships were vastly more competent all-around than their UsefulNotes/WorldWarII-era Goodyear counterparts, and could do more than simply advertise- advertise -- they can carry tourists in their spacious cabins, conduct research, and perform long-range scouting duties. Soon after, the Zeppelin Company, which had expanded into other markets following the ''[[UsefulNotes/TheHindenburg Hindenburg]]'' crash, reentered the airship business with the advanced semi-rigid Zeppelin NT. The NT, which has recently been updated and adopted by Goodyear to replace their aging blimps, also employs vectored thrust and composites, which drastically cut the crew and maintenance costs while increasing performance.

Shortly after this mini-revival of the 80's and 90's, the Pentagon became keenly interested in airships during the 00's. The major airship project of that decade, ultra-heavy-lift WALRUS program, was cancelled and subsequently revived in a different iteration by DARPA working with NASA and the Worldwide Aeros Corporation. During late 00's and into the 10's, the two primary airship developments, Blue Devil II and LEMV, were both cancelled. However, the private market is producing far more flying prototypes than any previous revival schemes were ever able to. This can be attributed to an influx of practicality: airship startups that had gone defunct, such as Cargolifter, attempted to build gigantic, impractical airships weighing in the millions of pounds from scratch, with next to zero experience or prototyping. Now, however, established companies such as Lockheed Martin, Hybrid Air Vehicles and Worldwide Aeros Corporation are developing hybrid airships in the smaller, more economical 20-50 ton capacity range. Solar Ship, a Canadian company, has set their sights even smaller- smaller -- they've produced three prototypes of a very small, solar powered flying wing hybrid airship that competes against small helicopters and bushplanes. After entering the market with these, ''then'' those companies will work on scaling the designs up for efficiency. Arguably the most significant development milestone has been the ongoing certification and liscencing process for production-model cargo airships; the creation of a new regulatory category of aircraft is currently under way.way.



Because they were available for far longer and were much more forgiving in terms of structure, aerodynamics and payload than airplanes, airships were experimentally used for a wide variety of niches- sometimes with the same ship. While some of these applications took off quite well, others [[JustForPun went over like a lead Zeppelin.]] Here's a brief summary of the uses that airships saw, as well as their performance.

• '''Advertising-''' Possibly the most lucrative and famous commercial use for airships, nearly as old as airships themselves, one which has sustained them in periods of obsolescence in other fields. Hot air airships in particular are incredibly cheap and profitable for advertising; for $80-$200,000 you can ''buy'' a hot airship, and advertise very effectively with little continual investment compared to far more expensive conventional ads and commercials.

• '''Luxury Liner-''' While the ships themselves were astonishingly luxurious, to a degree unmatched to this day, in practice [[MadeOfExplodium the results were decidedly mixed, thanks to hydrogen.]] The ''Hindenburg'' was profitable, a first for the Zeppelin Company, but unfortunately they were all scrapped due to the fire hazard before any could be used with nonflammable helium, so it's unknown how they would have fared in that niche.

• '''Heavy Cargo-''' First done successfully with the Soviets on a limited scale, typical airships have not been very suitable for heavy cargo operations. They can carry very heavy loads, and don't need runways, but their landing sites are a limiting factor- they require a large ground crew, large specialized infrastructure (hangars, masts, etc.), and delicate ballast exchange so their buoyancy doesn't make them uncontrollable during offloading. However, hybrids are completely the opposite; they're actually now being ''sought after'' because they require little to no infrastructure to take off, land, and offload cargo. In addition, they're fuel-efficient (which translates to long range), 1/3 the cost of similar airplanes and 1/10 the cost of similar helicopters, and are able to carry up to 500 tons of cargo for ''Hindenburg''-sized ships.

• '''Science and Research-''' Airships have consistently shone in research applications. They are quiet, cheap relative to other aircraft, stable, slow, and perhaps most importantly, can stay up in the air for extended periods. Blimps were even used to test atomic bombs. The US Navy's last airship, the MZ-3A, was used until 2013 as as a "flying laboratory," and the European PEGASOS Zeppelin is currently conducting atmospheric tests. The AS-300 also proved hot airships could conduct research; it carried around huge detachable study platforms with teams of scientists that could be deposited directly on the jungle without harming it. NASA has also shown an interest in airships as flying astronomical observatories, carrying telescopes above the thick lower layers of the atmosphere. They are also cheaper and more flexible than space-based telescopes.

• '''Surveillance-''' Airships have been used for surveillance ever since they were adopted by the military over a hundred years ago, and today they show no signs of slowing down. Aerostats- essentially kite blimps- remain the most dirt-cheap, low-risk surveillance system around, and the go- to for the US and Israeli militaries. Helicopters are noisy, expensive, have zero loitering ability, and are often shot down. Jets are even more expensive, though they have better endurance and less vulnerability. Satellites have an ungodly price tag, and are literally incapable of remaining over an area (at a distance where you can actually see anything). It's no wonder [[OlderIsBetter the 19th century option is preferred.]]

• '''Offensive military-''' DeathFromAbove meets the CoolAirship, in theory. In UsefulNotes/WorldWarI, the Germans in particular were gung ho on using Zeppelins to crush the Entente's will by bombing cities like Paris and London. Airships proved poorly suited for the task. A Zeppelin can take an immense amount of punishment, but that was rendered moot once the British- after many, many failures and a depressing 0% success rate- finally devised a method to shoot down a Zeppelin: the incendiary bullet. By war's end a third of the armada had been shot down, thanks to this invention- even though airships of the time carried as many as ''twenty-four AA guns'' and an '''autocannon,''' they [[PointDefenseless were rarely able to drive away the squadrons of fighters and their incendiary bullets]]. It didn't help that Zeppelins couldn't be produced in as great of numbers as planes, and their hangars were giant bombing targets to the enemy.

• '''Defensive military-''' Airships used in a defensive strategy proved vastly more effective than using them as an offensive weapon. In UsefulNotes/WorldWarII, American anti-submarine blimps escorted 80,000 ships, and only lost ''one'' of their protected vessels. In UsefulNotes/WorldWarI they were used for the same thing, but the records are fuzzier on their exact success rate. However, defensive airships became obsolete in the 1960s after the Soviets switched from bombers and diesel subs to [=ICBMs=] and nuclear subs.
* Some people may have noticed balloons in pictures of D-Day after the landings. A special type of airship (or balloon really since it was unpowered) known as a [[https://en.wikipedia.org/wiki/Barrage_balloon Barrage Balloon]] was used as an area-denial system for lower flying aircraft. Each balloon was anchored to something on the ground, be it a ship, truck, or something else, with steel cables. Any flying craft trying to go that low would get chopped up by the cables. They were fairly effective against dive-bombers or for defending a small hardened target that required precision bombing, but during the Blitz they were rarely more than a minor inconvenience; it doesn't really matter if you have to fly a few thousand feet higher and lose some accuracy when your target is an entire city.

• '''AirborneAircraftCarrier-''' An unorthodox combination of the above two, and in some ways superior to both. Invented in 1917, the aircraft carrier airship was originally intended to use its parasite fighter airplanes as a diversion or protection so that the then-lightened airship could ascend out of range and escape. Eventually, the carriers evolved from Zeppelins launching airplanes hanging off the keel to a launch-and-recover "trapeze" system connected to an internal hangar bay. The rationale evolved as well: the airship would use its immense range and endurance to serve as a kind of flying airbase to the aircraft, by proxy extending their range and endurance. Famously, two sister carriers of US Navy, the USS Akron and USS Macon, crashed in separate storms, with Admiral Moffet, the chief of US Naval airship program, being killed aboard the Akron, but both were due to human error, rather than being a poor concept. Still, as aircraft's ranges grew, the carriers were no longer necessary to fly sorties out at sea, and they became obsolete as well.

to:

Because they were available for far longer and were much more forgiving in terms of structure, aerodynamics and payload than airplanes, airships were experimentally used for a wide variety of niches- niches -- sometimes with the same ship. While some of these applications took off quite well, others [[JustForPun went over like a lead Zeppelin.]] Here's a brief summary of the uses that airships saw, as well as their performance.

• '''Advertising-''' * '''Advertising''': Possibly the most lucrative and famous commercial use for airships, nearly as old as airships themselves, one which has sustained them in periods of obsolescence in other fields. Hot air airships in particular are incredibly cheap and profitable for advertising; for $80-$200,000 you can ''buy'' a hot airship, and advertise very effectively with little continual investment compared to far more expensive conventional ads and commercials.

* '''Luxury Liner-''' Liner''': While the ships themselves were astonishingly luxurious, to a degree unmatched to this day, in practice [[MadeOfExplodium the results were decidedly mixed, thanks to hydrogen.]] hydrogen]]. The ''Hindenburg'' was profitable, a first for the Zeppelin Company, but unfortunately they were all scrapped due to the fire hazard before any could be used with nonflammable helium, so it's unknown how they would have fared in that niche.

* '''Heavy Cargo-''' Cargo''': First done successfully with the Soviets on a limited scale, typical airships have not been very suitable for heavy cargo operations. They can carry very heavy loads, and don't need runways, but their landing sites are a limiting factor- factor -- they require a large ground crew, large specialized infrastructure (hangars, masts, etc.), and delicate ballast exchange so their buoyancy doesn't make them uncontrollable during offloading. However, hybrids are completely the opposite; they're actually now being ''sought after'' because they require little to no infrastructure to take off, land, and offload cargo. In addition, they're fuel-efficient (which translates to long range), 1/3 the cost of similar airplanes and 1/10 the cost of similar helicopters, and are able to carry up to 500 tons of cargo for ''Hindenburg''-sized ships.

* '''Science and Research-''' Research''': Airships have consistently shone in research applications. They are quiet, cheap relative to other aircraft, stable, slow, and perhaps most importantly, can stay up in the air for extended periods. Blimps were even used to test atomic bombs. The US Navy's last airship, the MZ-3A, was used until 2013 as as a "flying laboratory," laboratory", and the European PEGASOS Zeppelin is currently conducting atmospheric tests. The AS-300 also proved hot airships could conduct research; it carried around huge detachable study platforms with teams of scientists that could be deposited directly on the jungle without harming it. NASA has also shown an interest in airships as flying astronomical observatories, carrying telescopes above the thick lower layers of the atmosphere. They are also cheaper and more flexible than space-based telescopes.

• '''Surveillance-''' * '''Surveillance''': Airships have been used for surveillance ever since they were adopted by the military over a hundred years ago, and today they show no signs of slowing down. Aerostats- Aerostats -- essentially kite blimps- blimps -- remain the most dirt-cheap, low-risk surveillance system around, and the go- to go-to for the US and Israeli militaries. Helicopters are noisy, expensive, have zero loitering ability, and are often shot down. Jets are even more expensive, though they have better endurance and less vulnerability. Satellites have an ungodly price tag, and are literally incapable of remaining over an area (at a distance where you can actually see anything). It's no wonder [[OlderIsBetter the 19th century option is preferred.]]

preferred]].

*
'''Offensive military-''' military''': DeathFromAbove meets the CoolAirship, in theory. In UsefulNotes/WorldWarI, the Germans in particular were gung ho on using Zeppelins to crush the Entente's will by bombing cities like Paris and London. Airships proved poorly suited for the task. A Zeppelin can take an immense amount of punishment, but that was rendered moot once the British- British -- after many, many failures and a depressing 0% success rate- rate -- finally devised a method to shoot down a Zeppelin: the incendiary bullet. By war's end a third of the armada had been shot down, thanks to this invention- invention -- even though airships of the time carried as many as ''twenty-four AA guns'' and an '''autocannon,''' '''autocannon''', they [[PointDefenseless were rarely able to drive away the squadrons of fighters and their incendiary bullets]]. It didn't help that Zeppelins couldn't be produced in as great of numbers as planes, and their hangars were giant bombing targets to the enemy.

* '''Defensive military-''' military''': Airships used in a defensive strategy proved vastly more effective than using them as an offensive weapon. In UsefulNotes/WorldWarII, American anti-submarine blimps escorted 80,000 ships, and only lost ''one'' of their protected vessels. In UsefulNotes/WorldWarI they were used for the same thing, but the records are fuzzier on their exact success rate. However, defensive airships became obsolete in the 1960s after the Soviets switched from bombers and diesel subs to [=ICBMs=] and nuclear subs.
* ** Some people may have noticed balloons in pictures of D-Day after the landings. A special type of airship (or balloon really since it was unpowered) known as a [[https://en.wikipedia.org/wiki/Barrage_balloon Barrage Balloon]] was used as an area-denial system for lower flying aircraft. Each balloon was anchored to something on the ground, be it a ship, truck, or something else, with steel cables. Any flying craft trying to go that low would get chopped up by the cables. They were fairly effective against dive-bombers or for defending a small hardened target that required precision bombing, but during the Blitz they were rarely more than a minor inconvenience; it doesn't really matter if you have to fly a few thousand feet higher and lose some accuracy when your target is an entire city.

• '''AirborneAircraftCarrier-''' * '''AirborneAircraftCarrier''': An unorthodox combination of the above two, and in some ways superior to both. Invented in 1917, the aircraft carrier airship was originally intended to use its parasite fighter airplanes as a diversion or protection so that the then-lightened airship could ascend out of range and escape. Eventually, the carriers evolved from Zeppelins launching airplanes hanging off the keel to a launch-and-recover "trapeze" system connected to an internal hangar bay. The rationale evolved as well: the airship would use its immense range and endurance to serve as a kind of flying airbase to the aircraft, by proxy extending their range and endurance. Famously, two sister carriers of US Navy, the USS Akron and USS Macon, crashed in separate storms, with Admiral Moffet, the chief of US Naval airship program, being killed aboard the Akron, but both were due to human error, rather than being a poor concept. Still, as aircraft's ranges grew, the carriers were no longer necessary to fly sorties out at sea, and they became obsolete as well.
Is there an issue? Send a MessageReason:
Critical Research Failure is a disambiguation page


Airships are often portrayed in the media as being MadeOfExplodium, which is somewhat justified, as there were dozens of hydrogen-related airship crashes, but oftentimes [[CriticalResearchFailure even helium blimps will be shown exploding in flames for no reason.]] The public at large seems to stereotype airships as ruinously expensive, disaster-prone, obsolete aircraft, with top speeds in the single digits, [[MadeOfPlasticine and that can be shot down with one shot from a BB gun.]] Oh, and [[MediaScaremongering the helium is]] [[TerminallyDependentSociety running out.]] These stereotypes are all either untrue or gross exaggerations. Most of these stereotypes are born out of a warped sense of scale, or simple ignorance, so it's no surprise that their accuracy is spotty.

to:

Airships are often portrayed in the media as being MadeOfExplodium, which is somewhat justified, as there were dozens of hydrogen-related airship crashes, but oftentimes [[CriticalResearchFailure even helium blimps will be shown exploding in flames for no reason.]] reason. The public at large seems to stereotype airships as ruinously expensive, disaster-prone, obsolete aircraft, with top speeds in the single digits, [[MadeOfPlasticine and that can be shot down with one shot from a BB gun.]] Oh, and [[MediaScaremongering the helium is]] [[TerminallyDependentSociety running out.]] These stereotypes are all either untrue or gross exaggerations. Most of these stereotypes are born out of a warped sense of scale, or simple ignorance, so it's no surprise that their accuracy is spotty.

Top